

Normal Forms for Context- Free Grammars

Eliminating useless symbols, Eliminating $€$-Productions.
Chomsky Normal form Griebech Normal form.

Pumping Lemma for Context-Free Languages

Statement of pumping lemma, Applications Closure
Properties of Context-Free Languages
Closure properties of CFL's, Decision Properties of CFL's Turing Machines
Introduction to Turing Machine, Formal Description, Instantaneous description, The language of a Turing machine

Normal forms for Context-Free Grammars

In linguistics and computer science, a context-free grammar (CFG) is a formal grammar in which every production rule is of the form

$$
\mathbf{V} \rightarrow \mathbf{w}
$$

where V is a "non-terminal symbol" and w is a "string" consisting of terminals and/or nonterminals.

The term "context-free" expresses the fact that the non-terminal V can always be replaced by w , regardless of the context in which it occurs.

A formal language is context-free if there is a context-free grammar that generates it.
Context-free grammars are powerful enough to describe the syntax of most programming languages; in fact, the syntax of most programming languages is specified using context-free grammars.

On the other hand, context-free grammars are simple enough to allow the construction of efficient parsing algorithms which, for a given string, determine whether and how it can be generated from the grammar.

Not all formal languages are context-free.

A well-known counter example is $\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}}: \mathrm{n}>=0\right\}$ the set of strings containing some number of a's, followed by the same number of b's and the same number of c's.

Just as any formal grammar, a context-free grammar G can be defined as a 4-tuple:
$G=\left(V_{t}, V_{n}, P, S\right)$ where
V_{t} is a finite set of terminals
V_{n} is a finite set of non-terminals
P is a finite set of production rules
S is an element of V_{n}, the distinguished starting non-terminal.
elements of P are of the form

$$
V_{n} \rightarrow\left(V_{t} U V_{n}\right)^{*}
$$

A language L is said to be a Context-Free-Language (CFL) if its grammar is Context-Free. More precisely, it is a language whose words, sentences and phrases are made of symbols and words from a Context-FreeGrammar.
Usually, CFL is of the form $\mathrm{L}=\mathrm{L}(\mathrm{G})$.

Example 1

A simple context-free grammar is given as:

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

where \mid is used to separate multiple options for the same non-terminal, and ε stands for the empty string. This grammar generates the language $\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}}: \mathrm{n}>=0\right\}$, which is not regular.

Regular languages

A regular language is a formal language (i.e., a possibly infinite set of finite sequences of symbols from a finite alphabet) that satisfies the following equivalent properties:
\square it can be accepted by a deterministic finite state machineit can be accepted by a nondeterministic finite state machine
\square it can be accepted by an alternating finite automaton
\square it can be described by a regular expression $\square \square$ it can be generated by a regular grammarit can be generated by a prefix grammar

Regular languages

The collection of regular languages over an alphabet Σ is defined recursively as follows:
the empty language \emptyset is a regular language. $\square \square$ the empty string language $\{\varepsilon\}$ is a regular language.
For each $a \in \Sigma$, the singleton language $\{a\}$ is a regular language.
If A and B are regular languages, then $A \cap B$ (union), $A \circ B$ (concatenation), and A^{*} (Kleene star) are regular languages.

No other languages over Σ are regular.

Finite languages

Finite languages are:

A specific subset within the class of regular languages is the finite languages - those containing only a finite number of words. These are obviously regular as one can create a regular expression that is the union of every word in the language, and thus are regular.

Example 2

A context-free grammar for the language consisting of all strings over $\{a, b\}$ which contain a different number of a's to b's is
$\square \quad \mathrm{S} \rightarrow \mathrm{U} \mid \mathrm{V}$
$\square \quad \mathrm{U} \rightarrow \mathrm{TaU} \mid \mathrm{TaT}$
$\square \mathrm{V} \rightarrow \mathrm{TbV} \mid \mathrm{TbT}$
$\square \quad \mathrm{T} \rightarrow \mathrm{aTbT}|\mathrm{bTaT}| \varepsilon$

Here, T can generate all strings with the same number of a's as b's, U generates all strings with more a's than b's and V generates all strings with fewer a's than b's.

Example 3

Another example of a context-free language is

This is not a regular language, but it is context free as it can be generated by the following context-free grammar:

$$
\begin{aligned}
& \square \quad \mathrm{S} \rightarrow \mathrm{bS} \mathrm{bb} \mid \mathrm{A} \\
& \mathrm{~A} \rightarrow \mathrm{a} \mathrm{~A} \mid \varepsilon
\end{aligned}
$$

Normal forms
Every context-free grammar that does not generate the empty string can be transformed into an equivalent one in Chomsky normal form or Greibach normal form. "Equivalent" here means that the two grammars generate the same language.

Because of the especially simple form of production rules in Chomsky Normal Form grammars, this normal form has both theoretical and practical implications.

For instance, given a context-free grammar, one can use the Chomsky Normal Form to construct a polynomial-time algorithm which decides whether a given string is in the language represented by that grammar or not (the CYK algorithm).

Properties of context-free languages
An alternative and equivalent definition of contextfree languages employs non-deterministic pushdown automata: a language is context-free if and only if it can be accepted by such an automaton.

A language can also be modeled as a set of all sequences of terminals which are accepted by the grammar. This model is helpful in understanding set operations on languages.

The union and concatenation of two context-free languages is context-free, but the intersection need not be.
The reverse of a context-free language is contextfree, but the complement need not be.

Every regular language is context-free because it can be described by a regular grammar.
The intersection of a context-free language and a regular language is always context-free.
There exist context-sensitive languages which are not context-free.
To prove that a given language is not context-free, one may employ the pumping lemma for contextfree languages.

The problem of determining if a context-sensitive grammar describes a context-free language is undecidable.

Normal forms for Context-Free Grammars

The goal is to show that every CFL (without ε) is generated by a CFG in which all productions are of the form $\mathrm{A} \square \square \mathrm{BC}$ or $\mathrm{A} \square \square \mathrm{a}$, where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are variables, and a is a terminal.

Normal forms for Context-Free Grammars

A number of simplifications is inevitable:

1. The elimination of useless symbols, "variables or terminals that do not appear in any derivation of a terminal string from the start symbol".
2. The elimination of ε-productions, those of the form $\mathrm{A} \square \square \varepsilon$ for some variable A .
3. The elimination of unit productions, those of the form $A \square \square B$ for variables A and B.

Eliminating useless symbols

A symbol X is useful for Grammar $G=\{V, T, P, S\}$, if there is some derivation of the form $S=>* a$ $\mathrm{Xb}=>^{*} \mathrm{w}$, where $\mathrm{w} \epsilon \mathrm{T}^{*}$

XeV or XeT

The sentential form of a Xb might be the first or last derivation
If X is not useful, then X is useless
Characteristics of useful symbols (for instance X):

1. X is generating if $X=>* w$ for some terminal string w. Every terminal is generating since w can be the terminal itself, which is derived by 0 steps.
2. $\quad \mathrm{X}$ is reachable if there is a derivation $\mathrm{S}=>^{*} \mathrm{a} \mathrm{Xb}$ for some a and b.

A symbol which is useful is surely to be both generating and reachable.
Eliminating the symbols which are not generating first followed by eliminating the symbols which are not reachable from the remaining grammar, this will generate a grammar consisting of only useful symbols.

If we have the following grammar:

Notice that a and b generate themselves "terminals", S generates a , and A generates b . B is not generating.

Eliminating ε-productions

After eliminating B:

Notice that only S and a are reachable after eliminating the non-generating B.
A is not reachable; so it should be eliminated. $\square \square$ The result :

This production itself is a grammar that has the same result, which is $\{\mathrm{a}\}$, as the original grammar.
Computing the generating and reachable symbols
Basis: Every Symbol of T is obviously generating; it generates itself.
Induction: If we have a production $\mathrm{A} \rightarrow \mathrm{a}$, and every symbol of a is already known to be generating, then A is generating; because it generates all and only generating symbols, even if $\mathrm{a}=\varepsilon$; since all variables that have ε as a production body are generating.
Theorem: The previous algorithm finds all and only the Generating symbols of G
Computing the generating and reachable symbols
Basis : For a grammar $G=\{V, T, P, S\} S$ is surely reachable.
Induction: If we discovered that some variable A is reachable, then for all productions with A in the head (first part of the expression), all the symbols of the bodies (second part of the expression) of those productions are also reachable.
Theorem: The above algorithm finds all and only the Reachable symbols of G

Eliminating useless symbols

So far, the first step, which is the elimination of useless symbols is concluded.

Now, for the second part, which is the elimination of ε-productions.
The strategy is to have the following:
if L is CFG , then $\mathrm{L}-\{\varepsilon\}$ is also CFG
This is done through discovering the nullable variables. A variable for instance A, is nullable if: $A=>{ }^{*} \varepsilon$.
Whenever A appears in a production body, A might or might not derive ε
Basis: If $\mathrm{A} \square \square \varepsilon$ is a production of G , then A is nullable
Induction: If there is a production
B $\square \square \mathrm{C}_{1} \mathrm{C}_{2} \ldots \mathrm{C}_{\mathrm{k}}$ such that each C is a variable and each C is nullable, then B is nullable
Theorem: For any grammar G, the only nullable symbols are the variables that derive ε in previous algorithm $\square \square$ Proof:
for one step : $\mathrm{A} \square \square \varepsilon$ must be a production, then this implies that A is discovered as nullable (as in basis).
for $\mathrm{N}>1$ steps: the first step is $\mathrm{A} \square \square \mathrm{C}_{1} \mathrm{C}_{2} \ldots \mathrm{C}_{\mathrm{k}} \square \square \varepsilon$, each
C_{i} derives ε by a sequence $<\mathrm{N}$ steps.
By the induction, each C_{i} is discovered by the algorithm to be nullable. So by the inductive step, A is eventually found to be nullable.

If a grammar G_{1} is constructed by the elimination of ε-productions " using the previous method " of grammar G, then

$$
\mathbf{L}\left(\mathbf{G}_{1}\right)=\mathbf{L}(\mathbf{G})-\{\varepsilon\}
$$

Eliminating unit productions

The last part concerns the eliminating of unit productions

Any production of the form $\mathrm{A} \square \square \mathrm{B}$, where A and B are variables, is called a unit production.

These production introduce extra steps in the derivations that obviously are not needed in there.
Basis: (A, A) is a unit pair of any variable A , if $\mathrm{A}=$ ** $^{\mathrm{A}}$ by 0 steps.

Induction: Let's (A, B) be a unit pair, and let $\mathrm{B} \square \square \mathrm{C}$ is a production, where A, B, and C are variables, then we can conclude that (A, C) is also a unit pair.

Theorem: The previous algorithm (basis and induction) finds exactly all the unit pairs for any grammar G. Example 7.12

Pair	Productions
(E, E)	$E \rightarrow E+T$
(E, T)	$E \rightarrow T * F$
(E, F)	$E \rightarrow(E)$
(E, I)	$E \rightarrow a\|B\| I a\|I b\| I 0 \mid I 1$
(T, T)	$T \rightarrow T * F$
(T, F)	$T \rightarrow(E)$
(T, I)	$T \rightarrow a\|B\| I a\|I b\| I 0 \mid I 1$
(F, F)	$F \rightarrow(E)$
(F, I)	$F \rightarrow a\|b\| I a\|I b\| I 0 \mid I 1$
(I, I)	$I \rightarrow a\|b\| I a\|I b\| I 0 \mid I 1$

After eliminating the unit productions, the generated grammar is:

$$
\begin{aligned}
& E \rightarrow E+T|T * F|(E)|a| b|I a| I b|I 0| I 1 \\
& T \rightarrow T * F|(E)| a|b| I a|I b| I 0 \mid I 1 \\
& F \rightarrow(E)|a| b|I a| I b|I 0| I 1 \\
& I \rightarrow a|b| I a|I b| I 0 \mid I 1
\end{aligned}
$$

This grammar has no unit productions and still generates the same expressions as the previous one.

Chomsky Normal Form

Conclusion of all three elimination stages:

Theorem: If G is a CFG which generates a language that consists of at least one string along with ε, then there is another CFG G_{1} such that:
$\mathrm{L}\left\{\mathrm{G}_{1}\right\}=\mathrm{L}\{\mathrm{G}\}-\{\varepsilon\}$, "no ε-productions", and G_{1} has neither unit productions nor useless symbols
Proof: Start by performing the elimination of ε-productions. Then perform the elimination of unit productions, so the resulting grammar won't introduce any ε-productions since the new bodies are still identical to some bodies of the old grammar. Finally, perform the elimination of useless symbols, and since this eliminates productions and symbols, it will never reintroduce any ε-productions nor unit productions

Every nonempty CFL without ε has grammar G in which all productions are in one of the following forms:
$\mathrm{A} \square \square \mathrm{BC}$, where A, B, and C are variables or
$\mathrm{A} \square \square \mathrm{a}$, where A is a variable and a is a terminal

Also G doesn't contain any useless symbols

A grammar complying to these forms is called a Chomsky Normal Form (CNF).
The construction of CNF is performed through:

1. Arrangement of all bodies of length 2 or more to contain only variables.
2. Breaking bodies of length 3 or more into a cascade productions, where each one has a body consisting of 2 variables.

Example 7.15

$I \rightarrow a|b| I a|I b| I 0 \mid I l$
 $F \rightarrow I \mid(E)$

 $E \rightarrow T \mid E+T$

First: we introduce new variables to represent terminals:

$$
\begin{array}{llll}
A \rightarrow a & B \rightarrow b & Z \rightarrow 0 & 0 \rightarrow 1 \\
P \rightarrow+ & M \rightarrow * & L \rightarrow(& R \rightarrow)
\end{array}
$$

Second: We make all bodies either a single terminal or multiple variables:

$$
\begin{aligned}
& E \quad \rightarrow \quad E P T|T M F| L E R|a| b|I A| I B|I Z| I O \\
& T \rightarrow T M F|L E R| a|b| I A|I B| I Z \mid I O \\
& F \quad \rightarrow L E R|a| b|I A| I B|I Z| I O \\
& I \rightarrow a|b| I A|I B| I Z \mid I O \\
& A \rightarrow a \\
& B \rightarrow b \\
& Z \rightarrow 0 \\
& O \rightarrow 1 \\
& P \rightarrow+ \\
& M \rightarrow \text { * } \\
& \begin{array}{lll}
L & \rightarrow \\
R & \rightarrow
\end{array}
\end{aligned}
$$

Last step: we make all bodies either a single terminal or two variables:

$$
\begin{aligned}
& E \quad \rightarrow E E C_{1}\left|T C_{2}\right| L C_{3}|a| b|I A| I B|I Z| I O \\
& T \rightarrow T C_{2}\left|L C_{3}\right| a|b| I A|I B| I Z \mid I O \\
& F \quad \rightarrow L C_{3}|a| b|I A| I B|I Z| I O \\
& I \rightarrow a|b| I A|I B| I Z \mid I O \\
& A \rightarrow a \\
& B \rightarrow b \\
& Z \rightarrow 0 \\
& O \rightarrow 1 \\
& P \rightarrow+ \\
& M \rightarrow \text { * } \\
& L \rightarrow \text { (} \\
& R \rightarrow \text {) } \\
& C_{1} \rightarrow P T \\
& C_{2} \rightarrow M F \\
& C_{3} \rightarrow E R
\end{aligned}
$$

PROPERTIES OF CONTEXT-FREE LANGUAGES

Decision Properties
Closure Properties
Summary of Decision Properties
\square As usual, when we talk about "a CFL" we really mean "a representation for the CFL, e.g., a CFG or a PDA accepting by final state or empty stack.

There are algorithms to decide if:

1. String w is in CFL L.
2. CFL L is empty.
3. CFL L is infinite.

Decision Properties

Many questions that can be decided for regular sets cannot be decided for CFL's.
Example: Are two CFL's the same? \square Example: Are two CFL's disjoint?
How would you do that for regular languages?
Need theory of Turing machines and decidability to prove no algorithm exists.

Testing Emptiness

We already did this.
We learned to eliminate variables that generate no terminal string.
If the start symbol is one of these, then the CFL is empty; otherwise not.

Testing Membership

Want to know if string w is in $L(G)$.
Assume G is in CNF.
Or convert the given grammar to CNF.
$\mathrm{w}=\varepsilon$ is a special case, solved the start symbol is nullable.
Algorithm (CYK) is a good dynamic programming and (n ${ }^{3}$), where $\mathrm{n}=|\mathrm{w}|$. by testing if example of runs in time O

CYK Algorithm

Let $w=a_{1} \ldots a_{n}$.
We construct an n-by-n triangular array of sets of variables.
$X_{i j}=\left\{\right.$ variables $\left.A \mid A=>* a_{i} \ldots a_{j}\right\}$. \square Induction on $j-i+1$.
The length of the derived string.
Finally, ask if S is in $X_{1 n}$.

Induction: $\mathrm{X}=\{\mathrm{A} \mid$ there is a production $\mathrm{A}->\mathrm{BC}$ and an integer k , with $\mathrm{i} \leq \mathrm{k}<\mathrm{j}$, such that B is in X and C is in $X_{k+1, j}$

Example: CYK Algorithm
Grammar: S -> $\mathrm{AB}, \mathrm{A}->\mathrm{BC}|\mathrm{a}, \mathrm{B}->\mathrm{AC}| \mathrm{b}, \mathrm{C}->\mathrm{a} \mid \mathrm{b}$ String $\mathrm{w}=\mathrm{ababa}$
$X_{12}=\{\mathrm{B}, \mathrm{S}\} \quad X_{23}=\{\mathrm{A}\} \quad X_{34}=\{\mathrm{B}, \mathrm{S}\} \quad X_{45}=\{\mathrm{A}\}$
$X_{11}=\{\mathrm{A}, \mathrm{C}\} \quad X_{22}=\{\mathrm{B}, \mathrm{C}\} \quad \mathrm{X}_{33}=\{\mathrm{A}, \mathrm{C}\} \quad X_{44}=\{\mathrm{B}, \mathrm{C}\} \quad \mathrm{X}_{55}=\{\mathrm{A}, \mathrm{C}\}$
Example: CYK Algorithm
Grammar: S -> AB, A -> BC |a, B -> AC |b, C -> a $\mid \mathrm{b}$ String w = ababa
$X_{13}=\{ \}$

$$
\begin{aligned}
& X_{12}=\{B, S\} \\
& \mathrm{X}_{11}=\{\mathrm{A}, \mathrm{C}\} \\
& \text { Yields } \\
& X_{23}=\{\mathrm{A}\} \\
& X_{22}=\{B, C\} \\
& \text { nothing } \\
& X_{34}=\{B, S\} \\
& X_{33}=\{\mathrm{A}, \mathrm{C}\} \\
& X_{45}=\{\mathrm{A}\} \\
& X_{44}=\{B, C\} \quad X_{55}=\{A, C\} \\
& \text { Example: CYK Algorithm } \\
& \text { Grammar: S -> AB, A -> BC |a, B -> AC |b, C -> a } \mid \mathrm{b} \text { String w = ababa } \\
& X_{13}=\{\mathrm{A}\} \\
& X_{12}=\{B, S\} \\
& X_{11}=\{\mathrm{A}, \mathrm{C}\} \\
& X_{24}=\{B, S\} \\
& X_{23}=\{\mathrm{A}\} \\
& X_{22}=\{B, C\}
\end{aligned}
$$

$$
\begin{aligned}
& X_{35}=\{\mathrm{A}\} \\
& X_{34}=\{\mathrm{B}, \mathrm{~S}\} \\
& X_{33}=\{\mathrm{A}, \mathrm{C}\} \\
& X_{45}=\{\mathrm{A}\} \\
& X_{44}=\{\mathrm{B}, \mathrm{C}\} \quad X_{55}=\{\mathrm{A}, \mathrm{C}\}
\end{aligned}
$$

Example: CYK Algorithm

Grammar: S -> AB, A -> BC $|\mathrm{a}, \mathrm{B}->\mathrm{AC}| \mathrm{b}, \mathrm{C}->\mathrm{a} \mid \mathrm{b}$ String $\mathrm{w}=\mathrm{ababa}$
$\mathrm{X}_{14}=\{\mathrm{B}, \mathrm{S}\}$
$X_{13}=\{A\}$
$X_{12}=\{B, S\}$
$X_{11}=\{\mathrm{A}, \mathrm{C}\}$
$X_{24}=\{B, S\}$
$X_{23}=\{\mathrm{A}\}$
$X_{22}=\{B, C\}$
$X_{35}=\{\mathrm{A}\}$
$X_{34}=\{B, S\}$
$X_{33}=\{\mathrm{A}, \mathrm{C}\}$
$\mathrm{X}_{45}=\{\mathrm{A}\}$
$\mathrm{X}_{44}=\{\mathrm{B}, \mathrm{C}\} \quad \mathrm{X}_{55}=\{\mathrm{A}, \mathrm{C}\}$

Example: CYK Algorithm
Grammar:
$X_{15}=\{\mathrm{A}\}$
S -> AB, A -> BC $|\mathrm{a}, \mathrm{B}->\mathrm{AC}| \mathrm{b}, \mathrm{C}->\mathrm{a} \mid \mathrm{b}$ String $\mathrm{w}=\mathrm{ababa}$
$X_{14}=\{B, S\}$
$X_{13}=\{\mathrm{A}\}$
$X_{12}=\{B, S\}$
$X_{11}=\{\mathrm{A}, \mathrm{C}\}$
$\mathrm{X}_{25}=\{\mathrm{A}\}$
$\mathrm{X}_{24}=\{\mathrm{B}, \mathrm{S}\}$
$X_{23}=\{\mathrm{A}\}$
$\mathrm{X}_{22}=\{\mathrm{B}, \mathrm{C}\}$
$\mathrm{X}_{35}=\{\mathrm{A}\}$
$\mathrm{X}_{34}=\{\mathrm{B}, \mathrm{S}\}$
$\mathrm{X}_{33}=\{\mathrm{A}, \mathrm{C}\}$
$\mathrm{X}_{45}=\{\mathrm{A}\}$
$\mathrm{X}_{44}=\{\mathrm{B}, \mathrm{C}\} \quad \mathrm{X}_{55}=\{\mathrm{A}, \mathrm{C}\}$

Testing Infiniteness
\square The idea is essentially the same as for regular languages.
Use the pumping lemma constant n .
If there is a string in the language of length between n and $2 n-1$, then the language is infinite; otherwise not.

Let's work this out in class.

CLOSURE PROPERTIES OF CFL'S:

CFL's are closed under union, concatenation, and Kleene closure.
Also, under and inverse
reversal, homomorphisms homomorphisms.
But not under intersection or difference.

Closure of CFL's Under Union

Let L and M be CFL's with grammars G and H , respectively.
Assume G and H have no variables in common.
Names of variables do not affect the language.
Let S and and H .
S_{2} be the start symbols of G
Closure Under Union - (2)
Form a new grammar for $\mathrm{L} \square \square \mathrm{M}$ by combining all the symbols and productions of G and H .
Then, add a new start symbol S. \square Add productions $S->S_{1} \mid S_{2}$.

Closure Under Union - (3)

In the new grammar, all derivations start with S .
The first step replaces S by either S_{2}.
S_{1} or
\square In the first case, the result must be a string in $L(G)=L$, and in the second case a string in $L(H)=M$.

Closure of CFL's Under Concatenation

Let L and M be CFL's with grammars G and H , respectively.
Assume G and H have no variables in common.
Let S and and $\mathrm{H} . \mathrm{S}_{2}$ be the start symbols of G

Closure Under Concatenation - (2)

\square Form a new grammar for LM by starting with all symbols and productions of G and H .
\square Add a new start symbol S.
\square Add production S -> $\mathrm{S}_{1} \mathrm{~S}_{2}$.
\square Every derivation from S results in a string in L followed by one in M .

Closure Under Star

Let L have grammar G , with start symbol S_{1}. \square Form a new grammar for L^{*} by introducing to G a new start symbol S and the 1

A rightmost derivation from S generates a sequence of zero or more S 's, each of which generates some string in L .

Closure of CFL's Under Reversal

If L is a CFL with grammar G, form a grammar for L^{R} by reversing the right side of every production.

Example: Let G have S -> $0 \mathrm{~S} 1 \mid 01$.
The reversal of $L(G)$ has grammar S-> $1 S 0 \mid 10$.

Closure of CFL's Under Homomorphism

Let L be a CFL with grammar G .
Let h be a homomorphism on the terminal symbols of G.
Construct a grammar for $\mathrm{h}(\mathrm{L})$ by replacing each terminal symbol a by h(a).

Example: Closure Under Homomorphism

G has productions S-> $0 \mathrm{~S} 1 \mid 01$. $\square \mathrm{h}$ is defined by $\mathrm{h}(0)=\mathrm{ab}, \mathrm{h}(1)=\varepsilon . \square \mathrm{h}(\mathrm{L}(\mathrm{G}))$ has the grammar with productions S-> abS |ab.

Closure of CFL's Under Inverse Homomorphism

Here, grammars don't help us.
But a PDA construction serves nicely.
Intuition: Let $\mathrm{L}=\mathrm{L}(\mathrm{P})$ for some PDA P . \square Construct PDA P' to $\operatorname{accept}^{\mathrm{h}}{ }^{-1}(\mathrm{~L})$.
P' simulates P , but keeps, as one component of a two-component state a buffer that holds the result of applying h to one input symbol.

Architecture of P^{\prime}
Input: $0011 \mathrm{~h}(0)$

Read first remaining symbol in buffer as if it were input to P .
Stack of P

Formal Construction of P^{\prime}

States are pairs [q, b], where:

1. q is a state of P .
2. b is a suffix of $\mathrm{h}(\mathrm{a})$ for some symbol a.
\square Thus, only a finite number of possible values for b.
Stack symbols of P^{\prime} are those of $\mathrm{P} . \square \quad$ Start state of P^{\prime} is $\left[\mathrm{q}_{0}, \varepsilon\right]$.
Construction of P^{\prime} - (2)
Input symbols of P^{\prime} are the symbols to which h applies.
Final states of P^{\prime} are the states $[\mathrm{q}, \varepsilon]$ such that q is a final state of P .

Transitions of P^{\prime}

1. $\delta^{\prime}([\mathrm{q}, \varepsilon], \mathrm{a}, \mathrm{X})=\{([\mathrm{q}$, any input symbol a of symbol X .
$h(a)], X)\}$ for
P' and any stack
2. When the buffer is empty, P^{\prime} can reload it.
3. $\delta^{\prime}([\mathrm{q}, \mathrm{bw}], \varepsilon, \mathrm{X})$ contains $([\mathrm{p}, \mathrm{w}], \square)$ if $\delta(\mathrm{q}, \mathrm{b}, \mathrm{X})$ contains (p, \square), where b is either an input symbol of P or
ε.
4. Simulate P from the buffer.

Proving Correctness of P^{\prime}
We need to show that $\mathrm{L}\left(\mathrm{P}^{\prime}\right)=\mathrm{h}^{-1}(\mathrm{~L}(\mathrm{P})) . \square$ Key argument: P^{\prime} makes the transition 0 0
t
$\left(\mathrm{q}_{0}, \mathrm{y}, \mathrm{Z}_{0}\right) \vdash^{*}(\mathrm{q}, \varepsilon, \square), \mathrm{h}(\mathrm{w})=\mathrm{yx}$, and x is a suffix of the last symbol of w .
Proof in both directions is an induction on the number of moves made.
Nonclosure Under Intersection

Unlike the regular languages, the class of CFL's is not closed under \square.

We know not a CFL that $L=\left\{0^{n} 1_{2}^{n}{ }^{n} \mid n \geq 1\right\}$ is (use the pumping lemma).
However, $L_{2}=\left\{0{ }_{0} 1_{2} n_{2}{ }^{\mathrm{i}} \mid \mathrm{n} \geq 1, \mathrm{i} \geq 1\right\}$ is. $\square \mathrm{CFG}: \mathrm{S}->\mathrm{AB}, \mathrm{A}->0 \mathrm{~A} 1|01, \mathrm{~B}->2 \mathrm{~B}| 2$.
So is $L_{3}=\left\{0{ }_{0}^{\mathrm{i}} 1^{\mathrm{n}}{ }_{2}^{\mathrm{n}} \mid \mathrm{n} \geq 1, \mathrm{i} \geq 1\right\}$.
But $\mathrm{L}_{1}=\mathrm{L}_{2} \square \square \mathrm{~L}_{3}$.
Nonclosure Under Difference
We can prove something more general:
Any class of languages that is closed under difference is closed under intersection.
Proof: $\mathrm{L} \square \square \mathrm{M}=\mathrm{L}-(\mathrm{L}-\mathrm{M})$.
Thus, if CFL's were closed under difference, they would be closed under intersection, but they are not.

Intersection with a Regular Language

Intersection of two CFL's need not be context free.
But the intersection of a CFL with a regular language is always a CFL.
Proof involves running a DFA in parallel with a PDA, and noting that the combination is a PDA.
\square PDA's accept by final state.
DFA and PDA in Parallel

| Input |
| :---: | :---: |
| Accept if both accept |
| DFA |
| PDA |

state of one PDA
Stack
Formal Construction

Let the
Let the
DFA A have transition
PDA P have transition
function $\delta_{\text {A }}$
. function δ_{P}.
States of combined PDA are $[q, p]$, where q is a state of A and p a state of P.
$\square \delta([\mathrm{q}, \mathrm{p}], \mathrm{a}, \mathrm{X})$ contains $([\delta(\mathrm{q}, \mathrm{a}), \mathrm{r}], \square)$ if $\delta_{\mathrm{P}}(\mathrm{p}, \mathrm{a}, \mathrm{X})$ contains (r, $\left.\square\right)$.
\square Note a could be \square, in which case $\delta_{A}(\mathrm{q}, \mathrm{a})=\mathrm{q}$.
Formal Construction - (2)
Accepting states of combined PDA are those $[q, p]$ such that q is an accepting state of A and p is an accepting state of P .
$([\mathrm{q}, \mathrm{p}], \square, \square)$ if and only if $\delta(\mathrm{q}, \mathrm{w})=\mathrm{q}$ and in $\mathrm{P}:\left(\mathrm{p}_{0}, \mathrm{w}, \mathrm{Z}_{0}\right) \vdash^{*}(\mathrm{p}$,

